NLP/패캠_자연어 입문 (10) 썸네일형 리스트형 2. Auto Encoder * 해당 필기내용은 패스트캠퍼스 자연어 입문 강의를 알려드립니다 Auto Encoder 오토인코더의 목적은 입력값 x을 넣었을 때, 출력값이 입력값 이었던 x값을 최대한 그대로 출력하는 것이다. 이 과정에서 Z라는 병목현상이 발생한다. 즉 입구가 좁아지기 되면서 x의 모든 정보가 아닌 정말 중요한 값들만 살려서 압축시킨다. 이를 통해 우리는 중요한 feature만을 추출할수 있게 된다. 압축을 위해서 encoder는 버릴 건 버리고, 챙길 건 챙기는 역할을 수행한다. 버리는 것은 필요없는 정보, 뻔한 특징들을 예로 들 수 있겠다. Z는 차원이 작기 때문에 데이터를 선택하고, 압축하는 과정을 수행한다. Z의 차원크기에 따라 압축의 정도가 달라진다. 또한 Z는 x를 복원하기 위한 정보를 엑기스로 모아 놓은 .. 1. Feature Vector * 해당 필기내용은 패스트캠퍼스 자연어 입문 강의를 알려드립니다 Featureand FeatureVector 1. 개요 머신러닝에서의 feature를 설명하기 위해서 Mnist 샘플을 통해 알아보자. 0과1 처럼 서로다른 숫자 모양에 대해서 구별할수 있는 feature가 필요하다. 또한 같은 5라는 숫자라도 사람마다 필기체가 다르듯 약간의 차이가 있다. 우리들은 다른 필기체라 하더라도 5라고 금방 인식하는 반면 머신러닝은 이둘을 구별하는 feature 필요하다. 정리를 하자면 각 샘플간의 feature와 샘플 내에 feature가 필요할것이다. 전통적인 머신러닝방법은 사람이 직접 feature를 정의하고 추출하는 전 과정이 필요한 반면, 딥러닝은 스스로 feature를 추출하는 장점이 있다. (각 장단점.. 이전 1 2 다음